Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hear Res ; 198(1-2): 99-115, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15567607

RESUMO

The main ascending, excitatory pathway from the cochlea undergoes synaptic interruption in the dorsal and ventral cochlear nuclei. The dorsal cochlear nucleus also forms a feed-forward circuit, which receives cochlear input and projects to the ventral cochlear nucleus by a tuberculo-ventral tract. This circuit may provide an inhibitory fringe (side bands) surrounding the center bands of the main ascending pathway. Biotinylated dextran injections into the dorsal cochlear nucleus anterogradely labeled the tuberculo-ventral tract and its endings in the anteroventral cochlear nucleus but also retrogradely filled cochlear nerve fibers and their terminals in the same regions. To distinguish tuberculo-ventral from cochlear nerve terminals, we used electron microscopy of the immunolabeled endings. Images were digitized and filter-enhanced, and the sizes and shapes of synaptic vesicles were used to construct quantitative profiles of the terminal types. The cochlear nerve endbulbs mapped to the same iso-frequency band of the injection site (main band). Flanking the main band were smaller labeled endings. About 45% of labeled terminals were pleomorphic and equally represented in the main band and side bands. Therefore, if there is an inhibitory fringe in the main projection pathway, it was not selective for tuberculo-ventral tract endings. Surprisingly, an excitatory category of round vesicles of intermediate size was labeled in the main band but not in the side bands. These intermediate endings may balance the feed-forward inhibition from the tuberculo-ventral tract. The quantitative method devised for classification of ending types by their vesicle profiles should be a generally useful tool for analysis.


Assuntos
Núcleo Coclear/ultraestrutura , Terminações Nervosas/ultraestrutura , Sinapses/ultraestrutura , Animais , Vias Auditivas/fisiologia , Vias Auditivas/ultraestrutura , Gatos , Núcleo Coclear/fisiologia , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Vesículas Sinápticas/ultraestrutura
2.
J Neurosci Res ; 77(5): 739-46, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15352221

RESUMO

Soman, an anticholinesterase and dangerous nerve agent, produces convulsions, memory impairment, and cell loss in the brain, especially in the hippocampus. Soman-induced accumulation of acetylcholine initiates mechanisms responsible for the development of incapacitating seizures. The prolonged epileptiform nature of these seizures causes the release of another excitatory neurotransmitter, glutamate, which has been linked to the toxic action of the nerve agent. Here, we tested whether subtoxic soman exposures influence the brain's sensitivity to glutamate-based excitotoxicity. Over a 1-week period, hippocampal slice cultures were exposed daily to a transient level of soman that produced no evidence of synaptic deterioration. After the subtoxic soman treatments, however, the tissue became vulnerable to a brief episode of glutamate receptor overstimulation that normally resulted in little or no excitotoxic damage. In those slice cultures treated with subtoxic soman, a decline in synaptic markers as well as an increase in spectrin breakdown occurred 24 hr after the mild excitotoxic event. Exposure to high soman concentrations alone produced similar synaptic degeneration, but without evident cell death, suggesting that synaptic decline is an early neurotoxicological response to the nerve agent. Interestingly, enhanced excitotoxic sensitivity caused the brain tissue to become susceptible to disparate insults initiated before or after the soman contact. These findings indicate that seemingly innocuous soman exposures leave the hippocampus sensitive to the types of insults implicated in traumatic brain injury and stroke. They also warn that asymptomatic contact with soman may lead to progressive synaptopathogenesis and that early indicators of soman exposure are critical to prevent potential brain injury.


Assuntos
Encefalopatias/induzido quimicamente , Inibidores da Colinesterase/toxicidade , Hipocampo/efeitos dos fármacos , Soman/toxicidade , Sinapses/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Western Blotting/métodos , Relação Dose-Resposta a Droga , Esquema de Medicação , Interações Medicamentosas , Agonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/fisiologia , Ácidos Nipecóticos/metabolismo , Técnicas de Cultura de Órgãos , Piperazinas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Coloração e Rotulagem/métodos , Sinaptofisina/metabolismo , Compostos de Trimetilestanho/farmacologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
3.
Toxicol Appl Pharmacol ; 185(2): 111-8, 2002 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-12490135

RESUMO

The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamatergic receptors have been linked to survival signaling, especially when the receptors are allosterically modulated by members of the Ampakine family. While increased glutamatergic communication through AMPA receptors has been shown to protect against toxic conditions that target hippocampal subfield CA1, protection in other subfields has not been shown. Accordingly, positive modulation of AMPA receptors by Ampakine compounds CX727 and CX516 was tested for effects on trimethyltin (TMT) neurotoxicity in rat hippocampal slice cultures. TMT was applied for 4 h followed by a rapid washout and antagonistic quenching of AMPA and N-methyl-D-aspartate (NMDA) receptors. After a 24-h period, the TMT-exposed slices exhibited increased levels of calpain-mediated spectrin breakdown as well as synaptic deterioration. TMT selectively targeted CA3 pyramidal neurons and dentate gyrus (DG) granule cells as evidenced by degeneration and neuronal loss. The cytoskeletal and synaptic damage was reduced when Ampakine modulation was initiated during the postinsult period. Furthermore, the extent of protection was comparable to that produced by the NMDA receptor antagonist AP5. The above results were substantiated by histological experiments, revealing that Ampakine treatment prevented TMT-induced cell loss in CA3 and DG. These results indicate that AMPA receptor signals are part of cellular repair responses following exposure to an environmental toxin.


Assuntos
Hipocampo/metabolismo , Receptores de AMPA/metabolismo , Compostos de Trimetilestanho/toxicidade , Animais , Calpaína/metabolismo , Dioxóis/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Técnicas In Vitro , Masculino , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/antagonistas & inibidores , Espectrina/metabolismo , Compostos de Trimetilestanho/metabolismo
4.
Exp Neurol ; 174(1): 37-47, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11869032

RESUMO

In the brain, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors mediate glutamatergic neurotransmission and, when intensely activated, can induce excitotoxic cell death. In addition to their ionotropic properties, however, AMPA receptors have been functionally coupled to a variety of signal transduction events involving Src-family kinases, G-proteins, and the mitogen-activated protein kinase (MAPK). In the present study, we tested whether AMPA receptors are linked to appropriate signaling events in order to prevent neuronal injury and/or enhance recovery. AMPA stimulation in hippocampal slice cultures caused the selective activation of MAPK through the upstream activator MAPK kinase (MEK). Inhibition of either component of the AMPA receptor--MAPK pathway potentiated cellular damage due to serum deprivation, suggesting that this pathway facilitates compensatory signals in response to injury. Correspondingly, positive modulation of AMPA receptors with the Ampakine 1-(quinoxalin-6-ylcarbonyl)piperidine (CX516) enhanced MAPK activation and reduced the extent of synaptic and neuronal degeneration resulting from excitotoxic episodes. CX516 was neuroprotective when infused into slices either before or after the insult. The Ampakine derivative also elicited neuroprotection in an in vivo model of excitotoxicity as evidenced by reduction in lesion size and preservation of two different types of neurons. Interestingly, the AMPA receptor--MAPK pathway selectively protects against excitotoxicity since enhancing the pathway did not protect against the nonexcitotoxic, slow pathology initiated by lysosomal dysfunction. The results indicate that glutamatergic communication is important for cellular maintenance and that AMPA receptors activate survival signals to counterpoise their own excitotoxic potential.


Assuntos
Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Transdução de Sinais/fisiologia , Regulação Alostérica/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Citoproteção/fisiologia , Citoesqueleto/efeitos dos fármacos , Dioxóis/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Estimulação Química , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...